Probleme 000000 Anwendungen

Résum

Uran-Thorium Datierung

Axel Berger

Institut für Ur- und Frühgeschichte Universität zu Köln

Seminar: Datierungsmethoden Wintersemester 2013/14 PD Dr. Daniel Richter

Probleme 000000 Anwendungen

Résum

Gliederung

1 Grundlagen und Methode

2 Probleme und Fehlerursachen

3 Anwendungen

A Résumé

Probleme 000000 Anwendungen

Résur

Grundlagen
00000

Probleme 000000 Anwendungen

Résum

Die Zerfallsreihe in der Nuklidkarte

		547)	σι~900	g; σ 160 + ?	g; of 2700 g; of 2600	σ 180; σ ₁ 0,020	g; σ _f 2100	σ 32 + 19; $\sigma_{\rm f}$ < 1	lγ;
		U 232 68,9 a α 5,320; 5,262 Ne 24:	U 233 1,592 · 10 ⁵ a α 4,824; 4,783 № 25:	U 234 0,0055 2,455 · 10 ⁵ a	U 235 0,7200 26 m 7,038-10ª a	U 236 120 ns 2,342 · 10 ⁷ a α 4,494; 4,445;	U 237 6,75 d β ⁻ 0,2 γ 60; 208	U 238 99,2745 270 ns 4,468-10 ⁹ a	β ⁻
Contraction of the local division of the loc	•	γ (58; 129); e σ 73; σ _f 74	γ (42; 97); e σ 47; σ _f 530	Mg 28; Ne; γ (53; 121) e ⁻ ; σ 96; $\sigma_{\rm f} < 0,005$	ly (0,07) Ne; γ 186 e ⁻ σ 95; σ _f 566	642 sf e ⁻ ; σ 5,1	e σ ~ 100; σ _f < 0,35	1879 2β ⁻ ; γ (50); ε ⁻ st σ 2,7; σ 3,10 ⁻⁶	γ 75 σ 22
		Pa 231 3,276 · 10 ⁴ a ^{α 5,014; 4,952;} 5,028; Ne 24; F 23?	Pa 232 1,31 d β ⁻ 0,3, 1,3; ε γ 969; 894;	Pa 233 27,0 d β 0,3; 0,6 γ 312; 300;	Pa 234 1,17 m 6,70 h β ⁻ 2,3 γ(1001; 1,2 267) + 121:881:	Pa 235 24,2 m β [−] 1,4	Pa 236 9,1 m β ⁻ 2,0; 3,1 γ 642; 687;	Pa 237 8,7 m β ⁻ 1,4; 2,3	β- γ 1(
c	00	γ 27; 300; 303; e σ 200; σ _f < 0,020	150; e σ 460; σ f 700	341; e ⁻ σ 20 + 19; σ _f < 0,1	$\begin{array}{c} 1 \gamma (74); e^{-1} \\ \sigma_{f} < 500 \end{array} \qquad \begin{array}{c} \gamma (31, 001), \\ 883; e^{-1} \\ \sigma_{f} < 5000 \end{array}$	γ 128 – 659 m	1763; g βsf ?	γ 854; 865; 529; 541	448 g
		Th 230 7,54 · 10 ⁴ a	Th 231 25,5 h	Th 232 100	Th 233 22,3 m	Th 234 24,10 d	Th 235 7,1 m	Th 236 37,5 m	T
4	5	$\begin{array}{l} \alpha \ 4,687; \ 4,621\\ \gamma \ (68; \ 144); \ e^-\\ Ne \ 24; \ \sigma \ 23,4\\ \sigma_f \ < 0,0005 \end{array}$	β 0,3; 0,4 γ 26; 84 e	$\begin{array}{c} 1{,}405\cdot10^{10}a\\ {}^{\alpha}{}^{4}{,}013;{}^{3}{,}950{};{}^{sf}\\ \gamma(64{});e^-\\ \sigma7{,}37;\sigma_f0{,}000003 \end{array}$	β 1,2 γ 87; 29; 459; e σ 1500; σ _f 15	$\begin{array}{l} \beta^{-} \ 0,2\\ \gamma \ 63; \ 92; \ 93\\ e^{-}; \ m\\ \sigma \ 1,8; \ \sigma_{f} < 0,01 \end{array}$	β 1,4 γ 417; 727; 696	β 1,0 γ 111; (647; 196)	β-
		Ac 229	Ac 230	Ac 231	Ac 232	Ac 233	Ac 234	2013년(1913)	

Ge05

Zeit nach der Störung (ka)

000000 00000000000 00000	Entwicklung der	Aktivitätsverhä	ltnisse	
Grundlagen Probleme Anwendungen Résumé	Grundlagen 00000	O00000	Anwendungen 000000000	Rèsumè 0000

Grundlagen 0000● Probleme 000000 Anwendungen

Résum 0000

Entwicklungslinien im U/U – Th/U – Diagramm

G	rui	ndl	ag	en
0		00	С	

Probleme •00000 Anwendungen

Résun 0000

Uran und Thorium im Periodensystem

Anwendungen

Résum

Korrektur der Verunreinigung mithilfe der Rosholt-Geraden

Die Steigung der Rosholt-Geraden entspricht dem Verhältnis des radiogenen Anteils von $^{230}\rm{Th}$ zum Mutternuklid $^{234}\rm{U}$ [Ge05, 96].

Probleme 00●000 Anwendungen

Résum

Ein Niedermoor als teiloffenes verunreinigtes System

Probleme 000000 Anwendungen

0000

Ein Niedermoor als teiloffenes verunreinigtes System

G	ru	nd	la	g	e	n
0	0		0			

Probleme 000000

Anwendungen

Résum

Die Meßwerte der Torfproben

No.	name	depth (cm)	ash (%)	$^{238}U \pm 2\sigma$ (dpm/g)	$^{230}Th/^{238}U\pm2\sigma$	$^{234}U/^{238}U\pm2\sigma$	$^{230}Th/^{232}Th\pm 2\sigma$
5133	L-1	30-35	50.4	0.537 ± 0.011	0.655 ± 0.032	1.194 ± 0.068	1.824 ± 0.081
5134	L-2	35-40	51.9	0.572 ± 0.018	0.617 ± 0.022	1.079 ± 0.047	1.555 ± 0.043
5135	L-3	40-45	49.7	0.494 ± 0.017	0.666 ± 0.029	1.119 ± 0.053	1.437 ± 0.059
5136	L-4	45-50	49.3	0.728 ± 0.022	0.657 ± 0.030	1.088 ± 0.046	1.790 ± 0.100
5137	L-5	50-55	47.3	0.640 ± 0.018	0.672 ± 0.031	1.136 ± 0.044	1.748 ± 0.107
5138	L-6	55-60	45.8	0.477 ± 0.008	0.755 ± 0.021	1.105 ± 0.026	1.545 ± 0.053
5129	T-2	35-40	51.9	1.582 ± 0.049	0.825 ± 0.032	1.001 ± 0.044	1.584 ± 0.075
5130	T-3	40-45	49.7	1.446 ± 0.034	0.900 ± 0.025	1.014 ± 0.033	1.240 ± 0.026
5131	T-4	45-50	49.3	2.009 ± 0.052	0.833 ± 0.025	1.030 ± 0.038	1.448 ± 0.036
5132	T-5	50-55	47.3	1.786 ± 0.039	0.843 ± 0.026	1.029 ± 0.032	1.352 ± 0.043

Probleme 000000 Anwendungen

Résun 0000

Das korrigierte Ergebnis

1763

Ge08

Dationung	Hählankunst m	it Kalaitaahiahtan		Y
00000	000000	00000000	0000	
Grundlagen	Probleme	Anwendungen	Résumé	

Datierung von Höhlenkunst mit Kalzitschichten

00000	000000	000000000	0000
Grundlagen	Probleme	Anwendungen	Résumé

Plausibiltätskontrolle an dicken Schichten

	 	=0	-		
00000		000000		00000000	0000
Grundlagen		Probleme		Anwendungen	Résumé

Altersverteilung der 50 gemessenen Proben

FB

Probleme 000000 Anwendungen

Résum 0000

Die beiden ältesten Proben aus der El-Castillo-Höhle

Probleme 000000 Anwendungen

Résun 0000

Die beiden ältesten Proben aus der El-Castillo-Höhle

Probleme 000000 Anwendungen

Résun 0000

Die beiden ältesten Proben aus der El-Castillo-Höhle

Auswahl derErgebnisse

Sample BIG-UTh-	Site	Description	²³⁰ Th/ ²³⁸ U	²³⁴ U/ ²³⁸ U	²³⁰ Th/ ²³² Th	Uncorrected age (ky)	Corrected age (ky)
			Minimum ages				
		Overlays red spotted outline					
0-53	Altamira	horse of Techo de los	0.2884 ± 0.0013	$\textbf{1.5471} \pm \textbf{0.0026}$	107.07 ± 0.20	$\textbf{22.26} \pm \textbf{0.11}$	22.11 ± 0.13
		Polícromos chamber					
		Overlays black outline drawing					
0-80	El Castillo	of indeterminate animal of	$\textbf{0.7879} \pm \textbf{0.0047}$	3.9828 ± 0.0073	$\textbf{30.01} \pm \textbf{0.15}$	$\textbf{23.43} \pm \textbf{0.16}$	22.88 ± 0.27
		corridor of Techo de las Manos					
0-58	El Castillo	Overlays red stippled negative	0.5272 ± 0.0020	2.5774 ± 0.0049	222.70 ± 0.49	24.42 ± 0.11	24.34 ± 0.12
		hand stencil of Techo de las Manos					
		Red pigment associated with					30.8 ± 5.6
0-21	lito Bustillo	anthropomorphic figure of	0.6252 ± 0.0031	1.8038 ± 0.0037	2.17 ± 0.01	44.94 ± 0.29	29.65 ± 0.55
		Galería de los Antropomorfos					
0-69	El Castillo	Large red disk of	0.7512 ± 0.0029	2.7072 ± 0.0051	788.2 ± 5.5	34.28 ± 0.17	34.25 ± 0.17
		Galería de los Discos					
0-50	Altamira	Large red clavitorm-like	0.4933 ± 0.0024	$\textbf{1.6594} \pm \textbf{0.0030}$	17.473 ± 0.068	37.60 ± 0.23	36.16 ± 0.61
		Symbol of recito de los Policionios					
0-82	El Castillo	band stepcil, and underlies vellow	0 5112 + 0 0029	1 6970 ± 0 0035	48 81 + 0 49	38 15 ± 0 27	37.63 + 0.34
0-02	Li Castillo	outline bison of Panel de las Manos	0.5112 ± 0.0027	1.0770 ± 0.0055	40.01 ± 0.47	50.15 ± 0.27	57.05 ± 0.54
		Overlays large red stippled disk					
0-83	El Castillo	of Panel de las Manos	0.3573 ± 0.0022	1.1048 ± 0.0020	28.64 ± 0.29	42.38 ± 0.33	41.40 ± 0.57
			Maximum aaes				
		Underlies large red disk of					
0-87	El Castillo	Galería de los Discos	0.7969 ± 0.0038	2.7432 ± 0.0051	61.24 ± 0.61	36.11 ± 0.21	35.72 ± 0.26
		(same panel as O-69)					
		Underlies red anthropomorph					24.2 + 4.5
0-48	Tito Bustillo	figure of Galería de los	0.5281 ± 0.0038	$\textbf{1.6895} \pm \textbf{0.0042}$	7.260 ± 0.047	39.85 ± 0.36	36.2 ± 1.5
		Antropomorfos (see also 0-21)					35.54 ± 0.39

Probleme 000000 Anwendungen

Résun 0000

Die Xianrenhöhle in Südchina

Probleme 000000 Anwendungen

Résun

Der gebänderte Stalagmit

Probleme

Anwendungen

Résum 0000

Die Verteilung der Meßwerte

²³⁰Th Age (AD)

Grundlagen	Probleme	Anwendungen	Résumé
00000	000000	000000000	•000
Résumé			

Reliability	Material	Closed system?	Contaminated?
Reliable	Unaltered coral Clean speleothem Volcanic rocks Dirty speleothem	Closed	Clean Clean - Contaminated
Possibly reliable	Ferruginous concretions Tufa Mollusc shells Phosphates	Possibly closed	Contaminated Contaminated Contaminated Contaminated
Generally unreliable	Diagenetically altered corals Bone Evaporites Caliche Stromatolites Peat and wood	Open	Clean ? Contaminated Contaminated Contaminated ?

Unter idealen Bedingungen ist die Genauigkeit des Verfahrens deutlich besser als ± 1 %. Es wird deshalb häufig zur Kalibration anderer Methoden verwendet, vor allem ¹⁴C jenseits der Dendrogrenze.

Probleme 000000 Anwendungen

Résumé 0000

Handout und Literatur

Vielen Dank

Das Handout und Literatur liegen auf: www.axel.berger-odenthal.de/work/Referat/

Probleme 000000 Anwendungen

Résumé

Literatur

Ei93 A. Eisenhauer, G. J. Wasserburg, J. H. Chen, G. Bonani, L. B. Collins, Z. R. Zhu & K. H. Wyrwoll, Holocene sea-level determination relative to the Australian continent, U/ Th (TIMS) and ¹⁴C (AMS) dating of coral cores from the Abrolhos Islands.

Earth and Planetary Science Letters 114 (1993), 529-547.

Ge05 Mebus A. Geyh, Handbuch der physikalischen und chemischen Altersbestimmung. (Darmstadt 2005).

Ge08 Mebus A. Geyh, ²³⁰ Th/U-dating of interglacial and interstadial fen peat and lignite: Potential and limits. Eiszeitalter & Gegenwart 57 (2008), 77–94.

He12 John Hellstrom, Absolute Dating of Cave Art. science 336 (2012), 1387–1388.

NU98 G. Pfennig, H. Klewe-Nebenius & W. Seelmann-Eggebert, Karlsruher Nuklidkarte. (Karlsruhe ⁶1998).

- Pi12 Alistair W. G. Pike, U-Series Dating of Paleolithic Art in 11 Caves in Spain. science 336 (2012), 1409–1413.
- PS02 Ekkehard Fluck & Klaus G. Heumann, Periodensystem der Elemente. (Weinheim ³2002).
- Sh13 Chuan-Chou Shen, Ke Lin, Wuhui Duan, Xiuyang Jiang, Judson W. Partin, R. Lawrence Edwards, Hai Cheng & Ming Tan, Testing the annual nature of speleothem banding. Scientific Reports 3 (2013), 2633. DOI:10.1038/srep02633.

Probleme 000000 Anwendungen

Résumé

Wa05 Mike Walker, Quaternary Dating Methods. (Chichester 2005).

Wa98 Wagner,

Literatur (cont.)

Age determination of young rocks and artifacts, Physical and chemical clocks in Quaternary geology and archaeology. (Berlin 1998).