Fraktionierung	Zinnverarbeitung	Résumé	
		00000	
			G

Zinnisotopie – Ein Irrweg

Dipl.-Ing. F. Axel Berger

Institut für Ur- und Frühgeschichte Universität zu Köln

Magie oder Wissenschaft? Aspekte früher Metallurgie Sommersemester 2017 Prof. Dr. Tobias L. Kienlin

	Fraktionierung 000	Zinnverarbeitung 000000000	Résumé 00000	
Gliederung			l	

Grundlagen

- **2** Fraktionieren der Isotope
- **3** Zinnverarbeitung und Isotope
- **4** Metallprovenienz durch Bleiisotope

6 Résumé

Grundlagen	Fraktionierung	Zinnverarbeitung		
00000				
Rekapitulatio	on Mittolstufe			•
Schulwissen de	iviitteistuie			

Alle Isotope eines Elementes verhalten sich bei chemischen Umsetzungen und bei fast allen physikalischen Prozessen genau gleich.

Die Mengenverhältnisse der Isotope eines Elementes sind unveränderlich und weltweit sowie für alle Zeiten genau gleich.

85.4678 2	87.62	4
85 87 72 2 27 8	86 87 99 70	88 82 6
86(β ⁻ , γ) 19 d	90(β ⁻) 28.	5 a
DL 4.177	C.	5.695
37 NU 1.53	38 31	2.63
Rubidium 38.9	Strontium	769

207.2 207 208 206 22.1 52.4 24.1 210(B, y) 22.3 a 7.416 82 11.34 327.5 Blei

Sauerstoff im	Gletschereis		Ľ	
00000			00000	-
Grundlagen	Fraktionierung	Zinnverarbeitung	Résumé	

15.9994 *
$$\left(1 - \frac{35}{1000} * \frac{0.2}{100} * \frac{2}{16}\right)$$

= 15.99926

Charleston				9	
00000			00000		
Grundlagen	Fraktionierung	Zinnverarbeitung	Résumé		

Strontiumisotope

Y 83 2,85 m 7,1 m β ⁺ 3,3	Y 84 40 m 4,6 s β ⁺ 3,1;	Υ 85 4,9 h 2,7 h β ⁺ 1,5;	Y 86 48 m 14,74 h ς.β [±] 1.2;	Y 87 13 h 80,3 h	Y 88 106,6 d	Y 89 -	Y 90 3,19 h 64,1 h	Y 91 49,7 m 58,5 d	Y 92 3,54 h
y 422, y 36; 495 iy (62); e ⁻ m g	γ 793; 974; β ⁺ 5,5 1040 γ	β* 2.2 2,1 hy γ 232; γ 504; 6' 2124 914 β' g m γ	γ 208 9 ⁻ γ 1077; 3 ⁺ 628; γ (1077) 1153	ly 381 ε ε β ⁺ β ⁺ γ 485 g m	ε β ⁺ γ 1836; 898	π 0,001 + 1γ 909 1.25	480 β ⁻ γ (2319) γ (2186)	β ⁼ 1,5 γ (1205) σ 1,4	β 3,6 γ 934; 1405; 561; 449
Sr 82 25,34 d	Sr 83 5,0 s 32,4 h	Sr 84 0,56	Sr 85 67,7 m/ 64,9 d	Sr 86 9,86	Sr 87 2,81 h 7,00	Sr 88 82,58	Sr 89 50,5 d	Sr 90 28,64 a	Sr 91 9,5 h
ε no β ⁺ no γ g	ε β ⁺ 1.2 γ 763; 381; 418	σ 0,6 + 0,2	γ 232 ¢ μ β ⁺ γ 151 γ 514	σ0,81 + 0,20	- Ηγ 388 ε σ 16	σ 0,0058	β 1,5 γ (909) g σ 0,42	β ⁼ 0,5 no γ g σ 0,014	β ⁼ 1,1; 2,7 γ 1024; 750; 653 m; g
Rb 81 30,3 m 4,58 h	Rb 82 6,3 h 1,27 m	Rb 83 86,2 d	Rb 84 20,5 m 32,8 d	Rb 85 72,165	Rb 86	Rb 87 27,835	Rb 88 17,8 m	Rb 89 15,2 m	Rb 90
$\begin{array}{c} 1\gamma86\\ e^-\\ \beta^+1.4\dots\\ \gamma(50\dots)\\ g \end{array} \qquad \begin{array}{c} \epsilon\\ \beta^+1.1\dots\\ \gamma446\dots\\ m\end{array}$	$\begin{array}{c} \varepsilon \\ \beta^+ 0.8 \\ \gamma 776; \\ 554; \\ 619 \\ \gamma 776 \end{array}$	ε; no β ⁺ γ 520; 530; h 553 4 m; g 2	e; β ⁺ 0,8; 1,7 β ⁺ 0,9 465; γ 882 216 σ _{n, p} 12	σ 0,06 + 0,45	β 1,8 ε γ 556 γ 1077	4,8 · 10 ¹⁰ a ^{β⁻ 0,3} ^{no} γ; g σ 0,10	β 5,3 γ 1836; 898 σ 1,2	β 1,3; 4,5 γ 1032; 1248; 2196	p 0,0 p 0,0 γ 832; γ 832; 1375; 1061; 13317 1366; 1 3317 4366; 1 1 1 1 1 γ 107; e ⁻ 4136 1 1 1 1
Kr 80 2,25	Kr 81	Kr 82 11,6	Kr 83	Kr 84 57,0	Kr 85	Kr 86 17,3	Kr 87 76,3 m	Kr 88 2,84 h	Kr 89 3,18 m
σ 4.6 + 7	10 ⁵ a ⁶ ⁶ γ (276)	σ14 + 7 e	hy9 e σ183	σ 0,09 + 0,02	β 0.8 γ.151 λγ.305 σ.1,66	σ 0,003	$\begin{array}{l} \beta^{=} 3,5;\ 3,9\\ \gamma\ 403;\ 2555;\\ 845\\ \sigma\ <\ 600 \end{array}$	β 0,5; 2,9 γ 2392; 196; 2196; 835; 1530	β 3,5; 4,9 γ221; 586; 1473; 904
Br 79 4,9 s 50,69	Br 80 4,42 h 17,6 m/	Br 81 49,31	Br 82 6,1 m 35,34 h	Br 83 2,40 h	Br 84 6,0 m 31,8 m	Br 85 2,87 m	Br 86 55,1 s	Br 87 55,7 s	Br 88 16,3 s
σ 2:5+ ly 207 8,3	β=2,0,. ¢; β ⁺ 0,9 γ 616; e ⁻ 666	ιτ 2,4 + 0,24	lγ (46) e	β 0,9 γ 530; 520 m	$\begin{array}{cccc} \beta^{+} 2.2 \\ \gamma 424; & \beta^{+} 4.6 \\ 882; & \gamma 882; \\ 1463 & 1898 \end{array}$	β 2,5 γ 802; 925 m	β 3,3; 7,6 γ 1565; 2751	β 6,8 γ 1420; 1476; 1578; 532; 2006 βn 0,02; 0,05	β 4,4; 6,9 γ 775; 802; 1441 βn
Se 78 23,78	Se 79 3,9 m 4,8 ·	Se 80 49,61	Se 81 57,3 m 18 m	Se 82 8,73	Se 83 69 s 22,4 m	Se 84 3,1 m	Se 85 33 s	Se 86 14,1 s	Se 87 5,8 s
σ 0,38 + 0,05	10°a ky96 β 0,2 e no γ g	σ 0,07 + 0,39	lγ 103 e β γ (260; 276) 290)	1,08 · 10 ²⁰ a	β 3,9 β 0,9; γ 1031; 2,9 357; γ 357; 988; 510; 674 225	β 1,4 γ 407 9	β ⁼ 6,2 γ 345; 3396; 1427	β 2,6 γ 2441; 2660	β γ 243; 334; 573; 468 βn

Rubidium ist im Erdmantel rund dreimal so häufig wie Strontium.

Grundlagen 0000●	Fraktionierung 000	Zinnverarbeitung 00000000	Résumé
Zinnisotope			

	240	PP		402			all the second second	000		140 400 - 010		113 010	0.0110.1.1.10	0	
	l 115 1,3 m	l 116 2,9 s	l 117 2,2 m	I 118 - 8,5 m 13 m 8 ⁴ - 4.9	l 119 19 m	120 53 m 1,35 h	l 121 2,12 h	l 122 3,6 m	I 123 13,2 h	l 124 4,15 d	l 125 59,41 d	I 126 13,11 d	l 127 100	128 25,0 m	l 129 1,57 · 10 ⁷ a
	β+ 9	β ⁺ 6,7 γ 679; 540	β ⁺ 3,5 γ 326; 274	γ 606; β* 5.5 600; γ 606; 614 545; Ιγ 104 ? \$333	β* 2,4 γ 258 g	p* 3.8 p* 4.6 y 560; y 560; 601; 1523; 614 641	β* 1,1 γ212 g	β ⁺ 3,1 γ 564	no β† γ 159 9	8 ⁺ 2,1 9 603; 1691; 723	γ35;e 9 7900	β ⁺ 1.1 γ 389; 666 σ ~ 10000	o r 6,15	γ 443; 527 σ 22	y 40 σ : g σ 20,7 + 10,3
	Te 114 15,2 m	Te 115 6,7 m 5,7 m	Te 116 2,5 h	Te 117 1,1 h	Te 118 6,0 d	Te 119 4,7 d 16 h	Te 120 0,096	Te 121 154 d 16,8 d	Te 122 2,603	Te 123 0,908	Te 124 4,816	Te 125 57,4 d 7,139	Te 126 18,95	Te 127	Te 128 31,69
The second second	 €; β⁺ γ 90; 1897; 727; 244; 1417 	6 ⁺ 2,7 y 724; y 770; 1381; 724; 1327; 1072 1099	«; β ⁺ γ94; 103 9	β ⁺ 1,8 γ 720; 1716; 2300	e no y g	ε γ 154; β* 0,6 1213; γ 644; 271 700	or 0,25 + 2,0	0" P	or 1,1 + 2,3	10 ¹³ a το γ σ ⁻ σ 420	rr 0.05 + 7	hr (35) 6 ⁻ < 1.5	rr 0,12 + 0,8	6 β 0,7 γ (58) β 0,7 γ 3400 γ 418	2β ⁻ σ 0,016 + 0,20
	Sb 113 6,67 m	Sb 114 3,5 m	Sb 115 32,1 m	Sb 116 50 m 16 m	Sb 117 2,8 h	Sb 118 5,0 h 3,5 m	Sb 119 38,5 h	Sb 120 5,76 d 15,9 m	Sb 121 57,36	Sb 122	Sb 123 42,64	Sb 124 20 m 1,6 m 60,3 d	Sb 125 2,77 a	Sb 126	Sb 127 3,85 d
いいという	β ⁺ 2.4; 2,5 γ 496; 332 g; m	β ⁺ 4,0 γ 1300; 888	¢ β ⁺ 1,5 γ497	β ⁺ 1.1 β ⁺ 2.3 γ 1294; γ 1294; 973; 832; 543 2223	β ⁺ 0,6 γ 159 9	β ⁺ γ 1230; β ⁺ 2,7 254; γ 1230; 1051 1267	γ24 e ^m 9	no β ⁴ γ 1171; 1023; β ⁴ 1.7 197; 90 γ 1171	or 0,4 + 5,5	H ₂ 61; 76 σ ^{**} 690	r 0.02 + 0.04 + 4,0	e ⁻ μ(25) e ⁻ (1,2) μ(25) μ(2	y 428; 601; 636; 463 g; m	y 415; 1,9 664 y 600; 4 ⁻ 17 (18) 606; 4 ⁻ 415	p 0,9; 1,0 v 696; 473; 7 784 3 g; m h
	Sn 112 0,97	Sn 113 21,4 m 115,1 d	Sn 114 0,65	Sn 115 0,34	Sn 116 14,53	Sn 117 13,6 d 7,68	Sn 118 24,23	Sn 119 293 d 8,59	Sn 120 32,59	Sn 121 -50 a 27,0 h	Sn 122 4,63	Sn 123 40,1 m 129,2 d	Sn 124 5,79	Sn 125 9,5 m 9,64 d	Sn 126 2,345 · 10 ⁵ a
Contraction of	er 0,16 + 0,40	hy (79) ε σ" y 255 g σ - 9	o ~ 0,12	o 30	u 0,0054 + 0,14	hy 150	ut 0,004 + 0,21	H 24	or 0.001 + 0.13	h (6) (F 0,35 γ 87 β* 0,38 6* το 1	or 0, 15 + 0,001	β 1,3 γ 180	11 0.13 + 0.005	p"2.0 y 1067; 1089; 2.0 y 302 916	β 0,3 γ 88; 64; 87 β m γ
	In 111 7,5 m 2,81 d	In 112 20,8 m 14,4 m	In 113 99,49 m 4,3	In 114	In 115 95,7	In 116	In 117	In 118	In 119	In 120	In 121 3,8 m 23,1 s	In 122	In 123	In 124 3,7 s 3,17 s	In 125
	4 9 245; 171 9	hy 155 Hy 617	o 8,5 + 3,3	e e 1,556; 725 (1300)	4,49 Π 5,336 β ⁻ 0,5 β ⁻ 0,5 το.γ γ (497) +44	1/1162 1294: 1067; 1294 417	γ 159 hy 315 e	e ⁻ 2.0 β ⁻ 4.2 β ⁻ 1.8 γ 1230; γ 254; 1051; γ 1230; 1230 683 528	γ(1065; 1250) β 1,8 hy 311 y 783 9 p	4.2 γ 1171; γ 1171; 1023; 1023; γ 1171 197864	β 3,7 γ60	γ 1140; γ 1140; 1001; 1001; γ 1140; 104., 1190	γ 120; 3,4 (3234; γ 1131; 1170) 1020 m m	5,1 6.2 y 1132; y 1132; 970; 3214; 1073 938	μ ⁺ 5.5 γ 1335, γ γ 133 1002 θ m m;g 1
and the second	Cd 110 12,49	Cd 111 49 m 12,80	Cd 112 24,13	Cd 113 12,22	Cd 114 28,73	Cd 115 44,8 d 53,38 h	Cd 116 7,49	Cd 117 3,31 h 2,42 h	Cd 118 50,3 m	Cd 119 2,2 m 2,7 m	Cd 120 50,8 s	Cd 121 8,3 s 12,8 s	Cd 122 5,5 s	Cd 123	Cd 124 1,29 s
		hy 245k 151 # 24	or 0.012 + 2.2	14,6 a 9-1010 a 6 0,6 14,(254) 8 0,3 9 9 20600		p 1/2 γ 834; β ⁺ 1,1 1291; γ 528; 464 462 g π	2,6 · 10 [™] a 28 [™] σ 0,026 + 0,052	y 1997; y 273; 1066; 1305; 564 344 g m; g	β ~ 0,8 g	p 1.2. p 1.3. 2.8 3.6 γ 1025: γ 293: 2021 243 9 πt g	β 1,8 γ g	γ 20002; γ 204; 1021; 1041; 988 349 g m	β 9	9 1168; 9 371; 1028; 1052; - 2103 1438 g mt g	9 3.9 y 180; 63; 143 9 9
	Ag 109 38,6 s 48,161	Ag 110	Ag 111 65 s 7,45 d	Ag 112 3,12 h	Ag 113	Ag 114 4,5 s	Ag 115	Ag 116 8,2 s 2,7 m	Ag 117 5,3 s 73 s	Ag 118 2,8 s 3,7 s	Ag 119	Ag 120	Ag 121 0,78 s	Ag 122 0,52 s	Ag 123 0,30 s
	hy 60 e v 4.4 + 87-	γ 658; 886 β" 2,9 ly 116 ε σ 62 γ 658	γ (80) # γ 342; # 245 γ (245) 9 # 3	β ⁼ 3,9 γ617; 1387	γχ. β ⁻¹ .1.2; β ⁻² .2.0 1,8 γ.299; γ.3.16; 250; 392; 299; 316 0 0	β ⁼ 4.9 γ558; 576	β" 3.1 γ 228: γ 228: 152 218: by(41) 473 6":g g.m	7 3.3 1 513: F ⁺ 5.7 706: τ 513 1029 F ₇ (82): σ ⁺ 700	9 ⁻³ 33 γ 135: 9 ⁻⁴ 2 387 lγ(23); e ⁻ 2338 4: n 5: n	F γ 488. β ⁻ 477	β ^{**} 4.3 1620; 366; 320 β ^{**} g.m	1 500; 693; 5" 925 1 500; h 203 688	β 4,9; 6,1 γ 315; 353; 501; g; m βn	β ^{**} γ 569; 760; 650 βn	β ^m y 264; 410; β 591; g; m γ βn β

Indium ist rund hundertmal seltener als Zinn und tritt hauptsächlich vergesellschaftet mit Zink auf. Das Zinnisotop 115 wird üblicherweise nicht gemessen.

Wie bei einem Schwermetall zu erwarten, sind die Abweichungen sehr gering.

Isotopenzusammensetzung zweier Referenzmetalle (links) und zweier Artefaktinventare der Aunjetitzer Kultur (rechts) relativ zu einem Laborstandard [Ne15, 9].

Fraktionierung	Zinnverarbeitung	Résumé
000		00000

Variationsbreite der Zinnisotope in alten Bronzen

Sample	Object	Find Location	Age *	Sn content [%]	f **
421	flat axe	Hagnau, Lake Constance	EBA; ~2100 B.C.	12.0	+ 0.29 ± 0.15
395	vessel	near Wetzlar, Germany	LBA; ~1200 B.C.	5.46	+ 0.20 ± 0.24
369	flat axe	Egypt	LBA; ~1300 B.C.	4.94	- 0.38 ± 0.34
201	needle	Singen, Germany	EBA; ~2200 B.C.	1.65	+ 0.73 ± 0.33
691	spiral bracelet	Bratislava, Slovakia	MBA; ~1600 B.C.	8.26	+ 0.61 ± 0.30
724	bracelet	Kalavasos, Cyprus	EBA; ~2500 B.C.	8.13	- 0.47 ± 0.27
416	pin	Überlingen, Lake Constance	EBA; ~2100 B.C.	7.72	+ 1.42 ± 0.48
218	fragment	Norşuntepe, Turkey	EBA; ~2400 B.C.	6.60	- 0.29 ± 0.19
263	vessel handle	Troy, Turkey	EBA; ~2500 B.C.	5.79	- 0.46 ± 0.16
421 E	S	ee above (repeat of first samp	ole)	11.8	$+0.35 \pm 0.28$

Für einen Vergleich mit den üblichen Deltawerten in Promille müssen die hier aufgeführten Fraktionierungen f ungefähr halbiert werden. Positive Werte zeigen eine Anreicherung der schweren Isotope [Be99, 279].

Die Fraktionierung von Kohlenstoff bedeutet:

- Pflanzenart, C3–C4
- Bewässerung
- terrestrisch–aquatisch
- Überdachung durch Baumbestand

Die Fraktionierung von Stickstoff bedeutet:

- Position in der Nahrungskette
- Düngung im Pflanzenbau
- Wassermangel

	Fraktionierung	Zinnverarbeitung							
		00000000							
Eurovincentelle Verhüttung von Zinner									
Experimentelle Vernuttung von Zinnerz									

Ergebnis des Verhüttungsexperimentes

Das Zinn wird im Vergleich zum Erz um ca. 0.2 ‰ schwerer [Be16, 196].

Be99

	Fraktionierung	Zinnverarbeitung		
Experimer	nteller Bronzegu	ß		00000
	itelier Bronzegu			
a stande	and the second	a	- Alton	
S. Sala				S. Par
A State				1.29
A DECEMBER OF			V V	
	Sector States	1	adaalaanka daa taalaa haalaa haala	hundrig

Das Zinn wird gemessen als 124 Sn/ 120 Sn rund 0.2 ‰ schwerer [Ya14, 463].

Altes metall	isches Zinn is	t außergewöhnlic	h rein	•
			000000	
		Zinnverarbeitung	Bleiisotope	

Sample			Sn [%]	Cu	Pb	As	Sb	Co	Ni	Ag	Au	Fe	w
Hishuley Carmel					-				1				
Haifa 1111/1	HDM	3231	96	15	9	43	9	1.6	<10	<0.6	1.4	<90	0.13
1111/2		3232	99	2	19	26	90	2.6	<16	<0.9	0.29	840	0.55
1111/3		3233	100	2	11	6	0.5	0.9	<12	32	122	180	0.79
1111/4		3234	103	2	7	10	9	1.5	<12	<0.7	0.23	630	0.76
1111/5		3235	91	58	6	130	262	2.,8	<15	<0.8	0.18	3040	2.3
Kefar Shamir													
Haifa 81-604	HDM	3240	92	3	220	26	14	31	12	<0.6	0.38	550	9.5
605		3239	94	4	32	30	14	2.8	10	<0.5	0.00	890	18
606		3241	89	12	8	31	21	2.3	12	<0.6	0.28	276	1.8
607		3237	100	4	14	38	15	3.4	11	<0.5	0.19	258	4.2
608		3238	100	4	12	41	14	2.7	8	<0.6	0.23	<90	0.46
609		3236	100	6	22	50	13	4.5	<30	<2	0.27	<350	1.7
Uluburun (Kas)													
KW 197	HDM	3242	73	1790	630	215	42	1.5	5	4.8	0.27	600	-01
199		3243	70	107	8	37	24	1.2	4	7.6	1.56	145	11
203		3244	75	130	0.5	37	19	2.8	5	<0.2	0.51	700	32
203A	.*	3245	66	346	3	29	12	2.7	6	1.0	0.28	750	0.3

Alle Spurenelementanteile in ppm [Be99, 282].

Blei in Erzregionen

Blei fraktioniert fast gar nicht und die Variationsbreite der Erzregionen umfaßt 300 resp. fast 400 ‰ [Da03].

Fi3

Fi3

rundlagen Fraktionierung

Das Zinn aus dem Meer

Die Erzregion südwestlich des Viktoriasees ist weltweit die einzige bekannte mit Bleiisotopverhältnissen wie sie die Zinnfunde der spätbronzezeitlichen Schiffswracks aufweisen [Da03].

F3

		0000000	
Fraktionierung	Zinnverarbeitung	Bleiisotope	

Der Altfund aus Alacahöyük

	Fraktionierung	Zinnverarbeitung	Bleiisotope	
			0000000	
Das Analys	seergebnis			•

Der Fundo	rt und mögliche	Bergwerke		9	
			000000		l
		Zinnverarbeitung	Bleiisotope		ĺ

	Fraktionierung	Zinnverarbeitung	Résumé	
			0000	
Rósumó				
Resume				

Die Isotopenverhältnisse des Zinns sind innerhalb einer Lagerstätte hochvariabel und unterliegen in der weiteren Verarbeitung starken Veränderungen.

Der Versuch aus Zinnisotopenverhältnissen in Artefakten auf die Quelle des Zinns zu schließen ist sinnlos.

	Fraktionierung 000	Zinnverarbeitung 00000000	Résumé 0●000	
Handout und	Literatur			

Vielen Dank

Handout und Literatur liegen auf: www.axel.berger-odenthal.de/work/Referat/

	Fraktionierung 000	Zinnverarbeitung 00000000		Résumé 00●●●
Literatur				A state of the
Be16 Dani Zinnisot von Zinn Metalla	iel Berger, Gerhard Brügmanr Denverhältnisse von Verhütt (2016), Sonderheft 8, 194–19	ı, Elin Figueiredo & Ernst Pernick ungsprodukten von Kassiterit un 07.	a, Id ihre Bedeutung für die He	erkunftsbestimmung
Be99 Fried Tracing In: Andr The Beg 1995. Der Anso	Irich Begemann, Konrad Kalli ancient tin via isotope analys eas Hauptmann, Ernst Pernic innings of Metallurgy, Procee chnitt, Beiheft 9 (Bochum 199	as, Sigrid Schmitt-Strecker & Ern: es. ka, Thilo Rehren & Unsal Yalgin (lings of the International Conferen 99), 277–284.	st Pernicka, (Hrsg.), 1ce "The Beginnings of Meta	llurgy", Bochum
Br15 Gerh Zinn-Iso Metalla	ard Brügmann, Daniel Berger tope und die Frage nach der (2015), Sonderheft 7, 189–19	r, Ernst Pernicka & Bianka Nessel, Herkunft prähistorischen Zinns. 91.	,	
Da03 Johr The prol In: Aless Le probl Universit BAR Inte	n E. Dayton, blem of tin in the ancient wor andra Giumlia-Mair & Fulvia eme de l'etain a l'origine de l. y of Liege, Belgium, 2–8 Septe ernational Series 1199 (Oxfor	id, (Part 2). Lo Schiavo (Hrsg.), a metallurgie – The Problem of E. mber 2001. d 2003), 165–170.	arly Tin, Acts of the XlVth U	ЛSPP Congress,
He09 Bart Rethinki millenniu Türkiye	oara Helwing, ng the Tin Mountains, Pattern um bc. Bilimler Akademisi Arkeoloji	ns of usage and circulation of tin in Dergisi 12 (2009), 209–221.	n Greater Iran from the 4th	to the 1st
Ma16 J. M Vergleich Metalla	Iarahrens, D. Berger, G. Brüg h der stabilen Zinn-Isotopenz (2016), Sonderheft 8, 190–19	nann & E. Pernicka, usammensetzung von Kassiteriter 93.	n aus europäischen Zinn-Le	agerstätten.

	OOO	2 innverarbeitung 000000000	CO000	M
Literatur	(cont.)			•

Ne15 B. Nessel, G. Brügmann & E. Pernicka,

Tin Isotopes and the Sources of Tin in the Early Bronze Age Únětice Culture.

In: Josep María Mata-Perelló, Mark A. Hunt Ortiz & Enrique Orche García (Hrsg.), Patrimonio Geológico y Minero: De la Investigación a la Difusión, Actas del XV Congreso Internacional Sobre Patrimonio Geológico y Minero, 25–28 de septiembre de 2014. (Logrosán 2015), 1–20.

NU98 G. Pfennig, H. Klewe-Nebenius & W. Seelmann-Eggebert,

Karlsruher Nuklidkarte.

(Karlsruhe⁶1998).

Pe98 Ernst Pernicka,

Die Ausbreitung der Zinnbronze im 3. Jahrtausend.

In: Bernhard Hänsel (Hrsg.),

Mensch und Umwelt in der Bronzezeit Europas – Man and Environment in European Bronze Age, Abschlußtagung: Die Bronzezeit, das erste goldene Zeitalter Europas, Berlin, 17.–19. März 1997. (Kiel 1998), 135–147.

PS02 Ekkehard Fluck & Klaus G. Heumann,

Periodensystem der Elemente.

(Weinheim ³2002).

Ya09 Ünsal Yalçın & Hadi Özbal,

Ein neues Zinnvorkommen in Kayseri-Hisarcık, Zentralanatolien, Ein Vorbericht. Türkiye Bilimler Akademisi Arkeoloji Dergisi **12** (2009), 117–122.

Ya14 E. Yamazaki, S. Nakai, Y. Sahoo, T. Yokoyama, H. Mifune, T. Saito, J. Chen, N. Takagi, N. Hokanishi & A. Yasuda,

Feasibility studies of Sn isotope composition for provenancing ancient bronzes. Journal of Archaeological Science 52 (2014), 458–467.

	Fraktionierung	Zinnverarbeitung	Résumé	1
			00000	
Literatur	(cont.)		~]

Ya16 Ünsal Yalçın,

Zinn für die Königin, Ein Barrenfragment aus Alacahöyük und seine Deutung.

In: Gabriele Körlin, Michael Prange, Thomas Stöllner & Ünsal Yalçın (Hrsg.), From Bright Ores to Shiny Metals, Festschrift for Andreas Hauptmann on the Occasion of 40 Years Research in Archaeometallurgy and Archaeometry. Der Anschnitt. Beiheft 29 (Bochum 2016), 69–74.

Yi99 Wen Yi et al.,

Tin isotope studies of experimental and prehistoric bronzes.

In: Andreas Hauptmann, Ernst Pernicka, Thilo Rehren & Unsal Yalgin (Hrsg.), The Beginnings of Metallurgy, Proceedings of the International Conference "The Beginnings of Metallurgy", Bochum 1995.

Der Anschnitt, Beiheft 9 (Bochum 1999), 285-290.